Сердце, логотип
www.CARDIOGENES.dp.ua
строение и развитие сердечно-сосудистой системы
Кардиогенез :: Развитие артерии... (Развитие кровеносных и…
 
Развитие кровеносных и лимфатических сосудов (монография), Киев, 1991
Развитие кровеносных и лимфатических сосудов (Бобрик И. И., Шевченко Е. А., Черкасов В. Г.) Киев, 1991г.
с.58-72
[ ⇐ назад | вперед ⇒ ]

Глава 3 Развитие артерий

3.1. ОНТОГЕНЕТИЧЕСКИЕ ОСОБЕННОСТИ СТРОЕНИЯ АРТЕРИЙ И ФУНКЦИИ ИХ СТЕНОК

Артериальная система имеет четкую возрастную градацию, которая в процессе онтогенеза проявляется неравномерным развитием, ростом и старением сосудов (В. П. Бисярина, В. М. Яковлев, П. Я. Кукса, 1986). В ходе онтогенеза отмечаются присущие всем видам артериальных сосудов региональные и фокальные различия биохимических, функциональных и морфологических характеристик сосудистой стенки. Возрастные изменения крупных артериальных сосудов протекают неравномерно. Изменения артериальных сосудов большого круга кровообращения выражены в большей степени, чем таковых в системе легочной артерии (О. В. Коркушко, 1978).

Стенка артерии представляет собой сложное образование, состоящее из гетерогенных высокодифференцированных клеток, отличающихся уникальным набором биохимических и физиологических функций. В стенке артерий можно выделить три оболочки: 1) внутреннюю (tunica intima); 2) среднюю (tunica media); 3) наружную (tunica adventica). В зависимости от толщины оболочек и характера гистологических структур, из которых они построены, различают артерии: 1) эластического типа (аорта, легочный ствол и др.); 2) мышечного типа (бедренная, плечевая, лучевая и др.).

Работ, посвященных ультраструктурным аспектам эмбриогенеза крупных артерий у млекопитающих, мало (М.Roach, 1983). Наиболее полно изучено развитие сосудистой системы у куриного эмбриона (Н.Karrer, 1960; F.Gonzales-Crussi, 1970). Это связано с рядом преимуществ данной модели развития сосудистой системы: короткий зародышевый период; легкодоступный материал, отличные оптические свойства сосудистой зоны. Строение сосудов у птиц отличается от такового у млекопитающих, хотя сосуды обоих видов содержат основные компоненты: эластин, мышечную оболочку, коллаген.

В развитии желточных сосудов выделено несколько фаз, которые коррелируют с динамикой артериального давления. Продолжающаяся дифференцировка и участие мезенхимы в формировании сосудистой стенки после стадии 22—23 сомитов в соответствии с окончательно установившимся подъемом артериального давления приводят к установлению зрелой сосудистой структуры (V. Hamburger, Н. Hamilton, 1951).

Начальная стадия в формировании кровеносных сосудов представляет, по мнению сторонника теории ангиобласта F. Gonzales-Crussi (1970), процесс самодифференцировки спланхноплевральной мезодермы желточного мешка, начинающийся до установления сердечной деятельности. В течение этой индифферентной стадии (L.Arey, 1963) сосудистая система имеет вид лабиринтной петлистой сети сосудов, имеющих диаметр капилляра. После начала сердечной деятельности (2-й день инкубации, 10 сомитов) эта стадия переходит в стадию первичной циркуляции (P. Johnstone, 1925). Первичная циркуляция возникает вне связи с формированием и развитием первичной, образованной только эндотелием, сосудистой трубки (L. Агеу, 1965). Между тем, гистологическая дифференцировка мезенхимы вокруг эндотелия не происходит раньше, чем кровь не начнет циркулировать в течение хотя бы нескольких дней (A. Hughes, 1943; F. Gonzales-Crussi, 1970). При этом гемодинамические силы оказывают большое влияние на формирование артерий и вен. В дальнейшем достигается фаза установившейся циркуляции, в которой кровь от сердца и к сердцу направляется по сформированным каналам.

Еще в 1893 г. R. Thoma высказал ряд гистомеханических принципов, подтверждающих значение артериального давления в дифференцировке эмбриональной сосудистой сети. L. van Mierop, С. Bertuch (1967) при помощи современного электронного оборудования установили тесную связь между определенными фазами структурной дифферёнцировки сосудов куриного эмбриона и кривой нормальных значений артериального давления.

Артериальному отделу сосудистого русла человека свойственна выраженная тенденция к варьированию. В этом плане не утратили своего значения представления М. А. Тихомирова (1900) о сущности этого явления, которые сводятся к трем следующим моментам:

1)  усиленное развитие в эмбриональный период анастомотических путей под влиянием механических причин. Причем главный (обычный, или так называемый нормальный) артериальный сосуд соответственно этому утрачивает свое значение и перестает быть главной артерией. В этих случаях нормальная артерия либо заменяется другой (коллатеральной), либо значительно уменьшается в калибре, и функция ее в значительной степени переходит к новой, наряду с ней развившейся артерией, либо вовсе «выпадает», замещаясь артериальной анастомотической цепью. Наиболее показательным примером этих явлений могут служить разнообразные варианты плечевой, запирательной и глубокой шейной артерий;

2)  временное нарушение в эмбриональный период соотношения роста частей организма, вследствие чего происходит смещение начала данной артерии. Последняя начинается выше или ниже обычного или начало ее передвигается даже на другой главный ствол (например, позвоночная артерия происходит не из подключичной, а из дуги аорты, из общей сонной артерии и т. д.). Возможен вариант, когда близко друг от друга отходящие ветви своими начальными отделами сливаются в один необычный ствол, или ветви, обычно начинающиеся одним общим для них стволом, приобретают раздельное самостоятельное начало (например, возвратная локтевая артерия нередко распадается на самостоятельную переднюю и заднюю возвратные локтевые артерии);

3)  остановка или изменение в развитии артериальной системы соответственно той или другой филогенетической системе (атавистические варианты); таковы, например, двойная дуга аорты, правосторонняя аорта.

Мнение о том, что мышечная оболочка артерий формируется из окружающих эндотелиальную трубку клеток мезодермального происхождения является общепризнанным. В пользу этой точки зрения высказывалась мысль о том, что и в постнатальньш период продолжают существовать относительно недифференцированные мезенхимные клетки, тесно связанные с капиллярами. При изучении роста сосудов в период заживления отмечено, что перициты представляют собой источник фибробластов и гладкомышечных клеток стенки сосудов (R. Ross и соавт., 1970, 1975; J. Rhodin, Н. Fusito, 1989). Не отрицая принципиальную возможность такого процесса при заживлении ран, следует все же подчеркнуть, что заключенные в дупликатуру базальнои мембраны перициты, как, впрочем, и адвентициальные клетки сосудистой стенки, уже у плодов человека существенно отличаются по своей морфологии от мезенхимных клеток эмбриона.

Морфологической основой организации артериальной стенки является коллагено-эластический каркас особого строения. Сложные взаимосвязи между эластическими, коллагеновыми и гладкомышечными волокнами определяют особенности изменения формы и напряжения артериальной стенки и комбинацию этих величин (Б. А. Пуриня, В. А. Касьянов, 1980). По мнению R. Сох (1981), пассивные свойства артерий определяются в основном соединительнотканными элементами: коллагеном и эластином, которые выполняют структурную функцию и служат каркасом для активных структур — гладкомышечных клеток и эндотелиоцитов. Эластин обладает низким эластическим модулем и обеспечивает равномерное распределение сил по стенке артерий, предотвращая потенциально повреждающие локальные напряжения. Коллаген также является сложной структурой, состоит из ряда различающихся структур (а-цепочек), характеризуется обширными внутри- и межмолекулярными пересекающимися связями, высоким модулем эластичности, обеспечивает поддержание структурной целостности артериальной стенки. При низких величинах напряжения или растяжения нагрузка ложится преимущественно на эластиновый матрикс, при высоких — на коллагеновые волокна, при средних — зависимость «напряжение — растяжение» определяется степенью вовлечения коллагеновых волокон. Различия механических свойств разных артерий обусловлены в основном общим содержанием соединительнотканных элементов в артериальной стенке и соотношением коллагена и эластина.

Вероятно, наибольший интерес исследователей в последние 10 лет привлекает внутренняя оболочка артерий. Интерес к структуре и функции артериального эндотелия продиктован комплексом причин. Эта клеточная выстилка служит первой границей контакта между кровью и артериальной стенкой и, возможно, играет важную, если не решающую роль в процессах атерогенеза. Кроме того, эндотелий представляет циркулирующей крови нетромбогенную поверхность, благодаря чему только в случае ее изменения нарушается нормальный гемостатический механизм. Артериальный эндотелий обнаруживает ряд сложных свойств, например, способность к регенерации или репликации как in vivo, так и в тканевой культуре, наличие активатора плазминогена, тканевых тромбопластинов, синтез фактора VIII и некоторых простогландинов, гистамина, коллагена и веществ базальнои мембраны, гепарина и гепаринсульфата, а также многих других веществ (В.В.Куприянов, И.И.Бобрик, Я.Л.Караганов, 1986; G.Majno, G. Goris, 1978; Н.Nossel, H.Vogel 1982; F.Hammersen и соявт., 1983). Потенциально важными свойствами эндотелия являются также возможное существование поверхностных рецепторов к липопротеидам, лекарственным веществам и гормонам; наличие эндотелиальной липопротеид-липазной активности; специфических иммунологических рецепторных механизмов; возможный рецепторный контроль клеточного метаболизма гладкой мускулатуры подлежащей средней оболочки стенки кровеносных сосудов (С. J. Schwartz и соавт., 1978).

В выполнении основной функции артерий эластического типа — передаче пульсовой волны и превращении ритмичного тока крови - в более равномерный, ведущую роль играет коллагено-эластический каркас (прежде всего эластические мембраны) сосудистой стенки (Г. В. Нестайко, А. Б. Шехтер, 1983). Новые важные сведения об адвентиции, медии, внутренней оболочке артерий, о трехмерной структуре эластических мембран и общей архитектонике коллагено-эластического каркаса сосудистой стенки были получены с помощью сканирующего электронного микроскопа. Показано, что благодаря разветвлению и анастомозированию эластических мембран медии и мембраноподобных структур внутренней оболочки стенка артерий представляет собой своеобразную губку с полостями, которые заполнены гликозаминогликанами, волокнами и клетками (Н. Wolinsky, S. Glagov, 1964; I. Fanning и соавт., 1981; С. van Baardwijk, 1983, и др.).

Фундаментальной единицей строения среднего слоя сосудистой стенки (медии крупных сосудов — аорты, легочного ствола) является пластинчатая (ламмелярная) единица (Н. Wolinsky, S. Glagov, 1964). Пластинчатая фиброэластическая единица имеет вид сандвича, образованного слоями эластина, расположенными по окружности и отделенными друг от друга мышечными элементами, тонкими эластическими и коллагеновыми волокнами.

Эластическое волокно состоит из эластина и микрофибрилл, имеющих гликопротеидную природу (R. Ross, P. Bornstein, 1969). Микрофибриллы, средний диаметр которых составляет 10 нм, располагаются в периферической части эластических волокон аорты и проникают в прилежащие коллагеновые волокна (S. Goldfischer и соавт., 1983). Микрофибриллы ориентированы соответственно линиям напряжения. Центральная часть эластических волокон состоит из электроннопрозрачного аморфного эластина, в котором различают сеть циркулярно расположенных микрофибрилл и трехмерную сеть филаментов не выясненной природы, распространяющихся среди эластических волокон. Предполагают, что ретикулярная субструктура филаментов соответствует надмолекулярной организации эластина (R. Сох, 1981). Эластические свойства стенки артериальных сосудов рассматриваются как интегратив-ная функция микрофибрилл и матрикса эластических волокон (А.Б. Шехтер и соавт., 1973). Считают, что одной из функций микрофибрилл является морфогенетическая (L. Robert, B. Robert, 1974). По данным А. Б. Шехтер и соавторов (1978), микрофибриллярный компонент преобладает там, где требования к механической прочности выше, чем к проявлению эластичности.

Эластин может продуцироваться фибробластами, гладкомышечными клетками (Н. Е. Karrer, 1960), эндотелиоцитами (W. H. Carries и соавт., 1979; I. О. Cantor, и соавт., 1980; М. Gabrovska, 1986). Эндотелиоциты синтезируют также эластазу (Т. I. Podor, N. Sor-gente, 1980). Наиболее ценные свойства эластина — его растяжимость и эластичность. Он может растягиваться на 250—300 % от первоначальной длины и также легко сокращаться, если растягивающее усилие снято. Именно этим объясняется роль эластина в обеспечении амортизационных свойств сосудистой стенки.

Амортизирующая функция эластина отмечена не только в сосудах взрослых особей, но ив зародышах (М. Roach, 1870; С. van Baardwijk, M. Roach, 1983). При СЭМ установлено, что эластин внутренней стороны мышечной оболочки артерий овец имеет форму фенестирированных пластинок, а адвентициальной — форму фиброзной сети. Средний диаметр фенестр во всех крупных артериях плодов овцы был почти в 2 раза больше, чем у взрослых особей. С возрастом плотность фенестр увеличивается. G. Campbell (1983) утверждает, что при этом слой эластина становится более протяженным (концепция «производительности»). По мнению М. Roach (1983), фенестры имеют большое значение для роста эластических мембран и артерий в целом. Кроме того, фенестры обеспечивают диффузию растворимых веществ к клеткам, лежащим на эластической мембране.

При СЭМ артерий мозга человека, которые имеют одиночный слой эластина (внутреннюю эластическую мембрану), установлено, что эластин имеет вид фенестрированной пластины (G. Campbell, М. Roach, 1981). Причем диаметр фенестр (при их плотности 2606+284 в 1 мм2) удивительно постоянен (2,1 мкм+0,13 мкм). На вершине же бифуркаций, где чаще развиваются аневризмы) фенестры больше.(7 мкм+0,34 мкм) и обильнее (4518+397 в 1 мм2).

По мнению R. Potter, M. Roach (1983), чрезмерное расширение фенестр в эластине лежит в основе развития аневризм. Представляет интерес, что эластин также отсутствует в области постстенотических дилатаций (М. Roach, 1979).

При помощи метода иммуноэлектронной микроскопии обнаружено, что белок микрофибрилл на поверхности эластических волокон может образовывать периодические структуры (М. Kewley, и соавт., 1977; S. Goldfischer и соавт., 1983; G. Krauhs, 1983). J. Krauhs (1983) отметила, что микрофибриллы, выявляемые после обработки аорты человека хондроитиназой, расположенные среди коллагеновых и эластических волокон и по ходу базальных мембран, имеют диаметр 9—11 нм. Во внутренней оболочке диаметр микрофибрилл меньше, чем в адвентиции сосуда. С помощью иммунохимических исследований установлено наличие в микрофибриллах фибронектина, который рассматривается как важный компонент в структуре кровеносных сосудов.

В. Ф. Кондаленко и соавторы (1985) не Ътносят периодические структуры на периферии эластических волокон подколенной артерии человека к их микрофибриллярному компоненту, а расценивают их как самостоятельные образования коллагена V типа.

Противоречивые данные о белковом составе микрофибрилл артерий можно объяснить методическими различиями. Уникальную модель для изучения свойств микрофибрилл диаметром 10—12 им, окрашивающихся в тканевых срезах гистологическими красителями на эластин, представляют гладкомышечные клетки аорты теленка, растущие в культуральной среде без аскорбата (S. Goldfischer и соавт., 1983). В таких культурах микрофиламенты выступают как нерастворимые внеклеточные белковые образования, не содержащие коллаген и эластин. Микрофибриллы имеют микротрубчатую структуру и те же гистохимические характеристики, что и окситалин. Белки микрофибрилл богаты глутаминовой и аспара-гиновой кислотами. Высказывается предположение (S. Goldfischer и соавт., 1983) о том, что функция микрофибрилл выходит за рамки механизма эластогенеза. Возможно, что микрофибрйллы функционируют как эластические соединительнотканные структуры в местах, где возможны существенные механические сдвиги.

В состав стромы артериальной стенки эластического типа кроме эластических волокон входят коллагеновые волокна. В совокупности они составляют субстрат опоры мышечных клеток.

Б. В. Шехонин и соавторы (1984), В. Ф. Кондаленко и соавторы (1985) исследовали распределение различных типов коллагена в артериальной стенке человека. Коллаген II, I и III типов выявлен при иммуноморфологических исследованиях в фибриллах межклеточного вещества артериальной стенки, имеющих поперечную исчерпаемость. Коллаген III типа может находиться также в нефибриллярной форме. Коллаген IV типа, наряду с неколлагеновым белком ламинином, обнаружен в базальных мембранах гладкомышечных клеток, а коллаген V типа — на поверхности и внутри несформированных и возле зрелых эластических волокон, Следовательно, коллаген V типа является своеобразным спутником эластогенеза. Вообще же наряду с фибронектином ему приписывают (A. Martinez-Hernandez и соавт., 1982) функции связывающего белка, объединяющего различные типы клеток с фибриллами, содержащими коллаген I и III типов.

В средней оболочке стенки артерий и артериол волокна гладкошмышечной ткани образуют пологие спирали, закрученные вправо и влево (И. К. Есипова и соавт. 1971). В. В. Куприянов (1983) считает, чтосоединениемышечных элементовистромыстенки сосуда следует рассматривать как эластомоторную спираль, сокращение которой влечет за собой не столько окклюзию сосуда, сколько его укорочение или удлинение. Такая организация мышечных элементов в стенке артерий способствует возникновению турбулентного кровотока, экономии энергии и материала, обеспечивающего повышенную прочность сосудистой стенки.

Г. А. Савич (1951)отметила закономерное увеличение с возрастом, степени наклона спиральных витков мышечных пучков в средней оболочке артерий: в меньшей степени в проксимальных отделах сосудов, в большей — в дистальных. У двадцатилетнег человекапо сравнению с годовалым ребенком увеличены число слоев и ширина спирально расположенных мышечных полосок.

Установлено,что кривая растяжимости артерийнелинейная так как содержит два компонента: инициальное растяжение элас тинаивторичноерастяжениеколлагена (М.Roach,A.Burton 1957). В основе структурного механизма, обеспечивающего возвра сосудистой стенки к исходному состоянию после растяжения, лежит пружиноподобное расположение миоцитов стенки, оплетенных коллагеновыми волокнами (А. В. Шехтер и соавт., 1978). Показано, что эластиновый компонент растяжения отсутствует в аневризмах (S. Scott и соавт.,1972), а также в постстенотически дилатациях (М. Roach, 1979). При изучении легочного ствола зародышей овцы выявлено, что эластичность данного сосуда с возрастом увеличивается экспоненциально, а толщина стенки сосуда возрастает линейно (М. Roach, 1983). Существует мнение, что именно гладкие миоциты создают фибриллярный каркас развивающегося сосуда, без которого выполнение сократительной и амортизирующей функций невозможно (В. И. Малюк; 1970; R. Wissler и соавт., 1981, и др.). В связи с этим R. Wissler и соавторы (1981) называют гладкие миоциты медии аорты мультифункциональными медиаль ными мезенхимными клетками.

В ходе постнатального онтогенеза плотность, ригидность круп ных артериальных сосудов большого и малого кругов кровообращения увеличиваются и они теряют эластичность (О. В. Коркушко, 1987). Причем в большей степени эти изменения проявляются в сосудах эластического типа, в которых коллагена и эластина больше. Наряду со снижением эластичности крупных артериальных сосудов повышается периферическое сосудистое и общее эластическое сопротивление (О. В. Коркушко, 1969).

Возрастные изменения артериальной стенки первично возникают в местах отхождения от магистрального сосуда других артериальных ветвей. Первоначально возрастные изменения в устьях аортальных ветвей человека проявляются в исчезновении внутренней эластической мембраны, утончении средней оболочки, в которой уменьшается общее число эластических мембран и увеличивается содержание соединительнотканных элементов. Такие изменения обычно расценивают как признаки начинающегося атеросклероза (Н. Pflieger, К. Goerttler, 1970). Развитию атеросклероза способствуют возникающие локально около устий артерий механические факторы — удар пульсовой волны крови, боковое артериальное давление, турбулентный ток крови (R. Fernandez и соавт., 1976; К. Chandran и соавт., 1977).

В. А. Миронов и соавторы (1988) методами СЭМ обнаружили изменения рельефа внутренней поверхности аорты при старении, которые, по мнению, авторов, представляют собой особый вид старческого ремоделирования эндотелиального монослоя без существенного нарушения его целостности, что предрасполагает к атеросклерозу.

3.2. РАЗВИТИЕ АОРТЫ И ЕЕ ВЕТВЕЙ

В литературе подробно проанализировано развитие крупных артерий человека в процессе преобразования жаберных атериальных дуг, и разделения артериального отвода и формирования сердца (А. Г. Кнорре, 1959; Б. П. Токин, 1970; М. Н. Умовист, 1973; F. Zille, 1952; I. Littmann, 1954, и др.). На зависимость развития сосудистой системы от развития сердца указывают данные тератологии. Так, в случае врожденного отсутствия сердца кровоток у плода определяется только в области пупочных сосудов и крупных атипичных артериальных стволов (S. Zanke, 1987).

В ранние сроки эмбриогенеза (5—6 нед) закладка артериальных стволов человека имеет вид зндотелиальных трубочек, окруженных мезенхимными клетками. Последние в ходе эмбриогенеза приобретают признаки гладкомышечных. Оболочки аорты человека становятся различными лишь к 12-й неделе (Н. М. Фрунташ, 1982). К этому периоду в средней оболочке определяются хорошо развитые пластинчатые единицы, начало формирования, которых приходится на 7—10-ю неделю.

S. Nikolov, V. Vankov (1984) с помощью метода электронной микроскопии изучали эндотелиоциты грудной аорты у крыс разных возрастных групп. В первой половине внутриутробного развития в эндотелиоцитах была хорошо развита шероховатая эндоплазматическая сеть, представленная системой сообщающихся цистерн, заполненных сравнительно плотным материалом. Пластинчатый комплекс в этот период развит плохо. Во все другие периоды пре-натального онтогенеза отмечено хорошее развитие не только зернистой эндоплазматической сети, но и пластинчатого комплекса. Авторы приходят к выводу, что «юные» эндотелиоциты способны как синтезировать, так и секретировать вещества, участвуя в образовании и дифференциации сосудистой стенки. У взрослых крыс лишь единичные эндотелиоциты имеют хорошо развитую зернистую эндоплазматическую сеть.

При несбалансированном росте внутренней оболочки аорты у новорожденных, детей и взрослых методами СЭМ и трансмиссионной электронной микроскопии (ТЭМ) выявлена поперечно-исчерченная извитая структура (A. Tanimura и соавт., 1983). Гистологически область поперечно-исчерченной извитой структуры характеризуется отечнойвнутреннейоболочкойснебольшим числом клеточных элементов и развитым соединительнотканным компонентом. С возрастом в области поперечно-исчерченной структуры усиливается клеточная пролиферация и нарастает соединительная ткань. Появляются клетки со вспененной цитоплазмой, среди гладкомышечвых клеток встречаются много коллагеновых и эластических волокон. Отмечено соответствие между частотой встречаемости поперечно-исчерченной извитой структуры и частотой склеротических повреждений аорты.

Первоначально в аорте человека эластические структуры появляются и интенсивно развиваются во внутренних слоях внутренней оболочки, что приводит к формированию на 3—4-м месяце внутренней эластической мембраны (Т. М. Мусаев, 1970; Н. М. Фрунташ, 1980), которая, по данным Н. Каггег (1960), является продуктом синтетической деятельности фибробластов и гладкомышечных клеток. В течение 3—4 мес внутриутробного развития содержание эластина аорты увеличивается на 20 % (М. R. Roach, 1983). В этот период на границе внутренней оболочки и медии появляются и другие элементы волокнистых слоев внутренней оболочки — коллагеновые волокна и соединительнотканные клетки.

Гладкомышечные клетки медии аорты предплодов человека располагаются циркулярно, а в наружной трети медии встречаются продольно и косо ориентированные, компактно расположенные миоциты (J. Rhodin, 1980).

У плодов человека 5 мес развития каждая гладкомышечная клетка при помощи тонких коллагеновых волокон фиксируется к эластическим мембранам и повторяет изгибы последних (В. В. Серов, А. В. Шехтер, 1981). За счет этого на 7—8-м месяце развития в средней оболочке аорты формируются типичные фиброэласто-мышечные мембраны (В. А. Гудзенко, 1974). Наружная оболочка аорты в этот возрастной период состоит из пучков косо ориентированных коллагеновых волокон и незначительного количества различно ориентированных тонких эластических волокон. К моменту рождения средняя и наружная оболочки аорты становятся более выраженными за счет их равномерного утолщения.

Л. К. Семенова и соавторы (1978) убедительно доказали взаимосвязь между дифференцировкой структурных элементов и содержанием в составе стенки аорты гликозаминогликанов, глико - и мукопротеинов, гликогена и белков, отражающих уровень интенсивности процессов метаболизма.

По данным ряда исследователей, в первые два десятилетия постнатальной жизни изменения толщины стенки аорты определяются преимущественным развитием средней оболочки, доля которой уже в период новорожденности составляет 70 % всей толщины стенки (S. Schwartz, E. Benditt, 1972; К. Н. Арнаут, 1976; И. Н. Путалова, 1982, и др.) Возрастные же изменения гистоструктуры наружной оболочки аорты происходят на фоне замедления ее роста и проявляются ее уплотнением, утолщением циркулярно и продольно ориентированных коллагеновых волокон и их новообразованием.

Начиная со второго десятилетия развития в стенке аорты обнаруживаются деструктивные процессы, выражающиеся в первую очередь в изменениях эластических компонентов — их фрагментации, распада и гомогенизации (В. X. Анестиди, 1965; Н. М. Фрун-таш, 1972; К. Н. Арнаут, В. П. Бодю, 1976, и др.). После 30 лет количество эластина в аорте снижается, изменяется его аминокислотный состав (A. Lansing, 1955), количество коллагеновых волокон увеличивается (О. Я- Кауфман и соавт., 1974). Степень повреждения эластина играет важную роль в накоплении холестерина и его эстеров в стенке аорты и артерий (Е. Г. Зота, 1969).

Что касается становления топографии сосудов, то морфологические признаки того или иного отходящего от аорты артериального сосуда закладываются в эмбриогенезе и определяет угол и место отхождения ветви (М. Zamir, 1976). Диаметр сосуда, вероятно, определяется степенью кровотока. Об этом свидетельствуют данные о развитии альтернативных каналов в случае экспериментального блокирования у животных нормального кровотока (Z. Rych-ter, 1962). Слой эластина в месте ответвления от аорты крупных артерий имеет сложное строение и отличается от эластина мелких артерий. Длина, размер и угол отхождения ветвей определяются геометрическими параметрами, в частности, относительным уровнем увеличения длины (М. Roach, 1983). Параметры артерий отвечают принципам минимума силы, площади и объема.

В литературе описаны связи между объемным кровотоком нижних конечностей и почек, нижних конечностей и кишок, на которые указывают синхронные изменения кровотока в одной из этих областей после реконструктивной сосудистой операции в другой области (S. Konntz и соавт., 1966; J. Lancaster и соавт., 1967; P. Bole и соавт., 1974; А. М. Игнатов и соавт., 1978). Эти данные подтвердили М. А. Сресели, А. Г. Орлов (1983), которые при помощи эксперимента на трупе человека установили явление взаимозависимости расходов жидкости и состояния сосудов при движении ее по ветвям ствола аорты, зависящее от соотношения поперечных размеров ствола аорты и отходящих от него ветвей. В ряде случаев коэффициент ветвления превышал 1, что при сосудистой патологии могло бы способствовать развитию взаимозависимости объемного кровотока и сосудистого тонуса в соседних ветвях аорты.

Предполагают, что межреберные артерии вырастают из стенки аорты путем почкования, а ветви брюшной аорты присоединяются к ней. На это указывают данные о содержании в стенке этих сосудов эластина (М. R. Roach, 1983). Отмечено, что количество пластинчатых единиц по длине грудной аорты уменьшается вследствие «отслойки» части эластина, уходящего на формирование межреберных артерий. У ягнят и овец слои эластина в месте ответвления отщепляются из наружной 7з и внутренней 2/3 средней оболочки. Ветви брюшной аорты более крупные, содержат больше мышечных элементов, количество эластина в них больше. По данным Н. Pflieger, К. Goerttler (1970), в средней оболочке проксимальных отделов стенок крупных артерий, отходящих от аорты, эластических волокон значительно больше, так как они переходят сюда из стенки аорты.

Представляет интерес изменение чувствительности а-адреноре-цепторов гладкомышечных клеток и характера их ответной реакции на норадреналин в чревном стволе, верхней и нижней брыжеечных артериях, обнаруженное у кроликов (R. Pascual, I. А. Веvan, 1980). Перечисленные артерии в 2 раза менее чувствительны к экзогенному норадреналину, чем брюшная аорта. После удаления эндотелия чувствительность аорты к норадреналину не изменяется, а верхняя брыжеечная артерия становится более чувствительной к нему. Данный феномен, по-видимому, свидетельствует не только о различии в свойствах гладкомышечных клеток аорты и ее брюшных ветвей, но и о различии в функциональном состоянии эндотелия этих сосудов.

С возрастом эластические волокна крупных артерий утолщаются, количество их за счет расщепления увеличивается, особенно во внутренней оболочке сосуда. Расщепление эластических волокон сопровождается появлением участков, где коллагеновые волокна замещают эластические. Подобные возрастные изменения артериальной стенки первоначально возникают в местах отхождения от магистрального сосуда других артериальных стволов (Б. А. Пуриня, В. А. Касьянов, 1980).

3.3. РАЗВИТИЕ ЛЕГОЧНОГО СТВОЛА И ЕГО ВЕТВЕЙ

В настоящее время не вызывает сомнения развитие крупных артерий человека, в том числе легочного ствола, в процессе преобразования жаберных артериальных дуг, разделения артериального ствола и формирования сердца (Б. П. Токин, 1970; А. Н. Задорожная, 1972; М. Н. Умовист, 1973; J. Liftman, 1954; А. Кнорре, 1959; D. Starck, 1959, и др.).

Рис. 7. Стенка легочного ствола эмбриона человека
Рис. 7. Стенка легочного ствола эмбриона человека 6 нед внутриутробного, развития: ПрЛС— просвет легочного ствола; ЦЭ — цитоплазма эндотелиоцита; ЯМК — ядро мезенхимной клетки. Ув. 10 000

Гистологическая диффренцировка стенки легочного ствола (артерии эластического типа) во многом схожа с таковой в аорте (P. Harris, D. Heath, 1962). Однако имеются и отличия, так легочный ствол скачкообразно увеличивается и утолщается со 2-й половины антенатального онтогенеза (М. Б. Новиков, 1967), тогда как аорта развивается относительно равномерно на протяжении всего периода внутриутробного развития.

По данным электронно-микроскопического исследования, эндотелиоциты легочного ствола эмбрионов человека 6—7 нед внутриутробного развития характеризуются развитыми структурами синтетического аппарата, рис. 7 (И. И. Бобрик, С. А. Зурнаджан, 1988). Высокую синтетическую активность проявляют и прилежащие к эндотелиоцитам мезенхимные клетки, которые по мере развития приобретают черты миофибробластов или метаболических гладкомышечных клеток. Коллагеновые волокна в стенке легочного ствола человека появляются среди мезенхимных клеток раньше эластических. Эластические же волокна начинают формироваться в микроокружении, создаваемом не мезенхимными клетками, а дифференцирующимися из них миофибробластами (малодифференцированными миобластами или незрелыми гладкомышечными клетками). Уже у плодов 4 мес в средней оболочке стенки легочного ствола имеются отдельные прослойки эластина, расположенные по окружности и отделенные друг от друга мышечными элементами, тонкими эластиновыми волокнами, коллагеном. За период 4—5 мес пренатального развития клетки медии легочного ствола приобретают характерную для гладкомышечных клеток морфологию. Они имеют веретеновидную форму, организованный сократительный аппарат (филаменты), «плотные тельца», которые включают а-актинин (W. Gordon, 1978).

На развитие ветвей легочного ствола влияют рост, развитие и интенсивность обмена в дыхательной паренхиме, а также общегемодинамические факторы и дыхательные движения плода (И. Г. Поддубный, 1962, 1964). На протяжении внутриутробного периода развития ветви легочного ствола характеризуются значительной толщиной стенки и узким просветом (В. А. Малишевская, 1967). По мнению О. Я. Кауфман (1964, 1965), чем меньше возраст плода, тем больше протяженность недифференцированных сосудов с узким просветом.

С момента рождения начинается качественно новый этап развития легочного ствола и его ветвей. S. Hall, S. Haworth (1986) методами ТЭМ и СЭМ установили, что у свиньи в течение первых 3 нед после рождения объемная плотность коллагена, базальной мембраны и эластина в субэндотелиальном слое легочных артерий существенно увеличивается. Внутренняя эластическая мембрана,, незрелая во всех артериях у новорожденного, увеличивается в толщину и становится более компактной у взрослых. Выраженные изменения происходят во внутренней оболочке легочных артерий. Уменьшается соотношение поверхности и объема эндотелия, что указывает на клеточный рост. Выпячивания на поверхности эндотелия, интердигитации и области перекрытия, характерные для внутренней оболочки плода, становятся менее заметными. У новорожденных морфология эндотелиоцитов меняется быстрее и более значительно в периферических артериях по сравнению с проксимальными.

Как и во всех артериях эластического типа, с возрастом уменьшается эластичность легочной артерии, однако это сочетается с увеличением ее крупных стволов, что обеспечивает стабильность артериального давления (О. В. Коркушко, 1978).

Поддержка
 © 2008-2015 Cardiogenes.dp.ua
© обработка Dr. Andy  
Key words: heart, cardiogenesis, cardiac development. Ключевые слова: сердце, кардиогенез, гистогенез миокарда эндокарда эпикарда, ангиогенез, развитие сердечно-сосудистой системы, васкулогенез, эмбриология, теоретическая кардиология, врожденные пороки сердца, струны сердца. Миокард человека и животных, наука, медицина, ветеринария, сердце.
Rambler's Top100 li MyCounter